CATEGORY 1: You should recognize when to use these tests on sight:

## p-series

geometric root

CATEGORY 2: You should always consider this test before the Category 3 tests:
divergence (in some cases, may be easier to run ratio test first)
CATEGORY 3: These are the remaining tests:
ratio
limit comparison $(\boldsymbol{\nabla})(\mathbf{0}) \quad$ alternating series
(direct) comparison $(\boldsymbol{\nabla}) \quad$ absolute convergence ( $\mathbf{\nabla})$
telescoping
integral
(V) requires the creation of another series,
on which you will need to start the convergence testing process over again
( $\mathbf{O}$ ) if you can achieve an inequality of the desired format $\left(0<a_{n} \leq b_{n}\right)$ by simply deleting
terms or factors without changing coefficients, a (direct) comparison test will be less work

Looking back at your homework, if you see the following expressions inside the summation, and none of the Category 1 or 2 tests apply, which Category 3 tests are more likely to be productive? (Some will have multiple tests.)

```
n}\mp@subsup{}{}{k}\mathrm{ (where }k\mathrm{ is a constant)
bn}\mathrm{ (where b is a positive constant)
bn}\mathrm{ (where b is a negative constant)
ln}
sin}
cosn
cos}n
arcsin}
arccosn
arctan}
n!
n
sum/difference of the above (ie. which term is most important in your choice ?)
product of the above (ie. which factor is most important in your choice ?)
```

The choices you make above will also usually apply if you replace $n$ with a linear (and sometimes polynomial) function in $n$.

When doing (direct) comparisons, what upper and lower bounds should you try for the following functions?
Some bounds will be constants, some bounds will be functions.
Remember $n \geq 1$.


